爱德思

Further Pure Mathematics 1

分类真题

2014-2022 册

A Level Clouds 出品

	目录)	
	Chapter 1 Complex Numbers	1
010	Chapter 2 Roots of Quadratic Equations	73
	Chapter 3 Numerical Solutions of Equations	109
	Chapter 4 Coordinate Systems	150
	Chapter 5 Matrices	209
	Chapter 6 Series	268
	Chapter 7 Proof	300

Chapter 1 Complex Numbers 1

4.	$f(x) = x^4 + 3x^3 - 5x^2 - 19x - 60$	
	(a) Given that $x = -4$ and $x = 3$ are roots of the equation $f(x) = 0$, use algebra to solve	
	f(x) = 0 completely.	
	(7)	
	(b) Show the four roots of $f(x) = 0$ on a single Argand diagram.	
	(2)	
	-10	
	0.7	
	0 25	
_		

_	(*)		blank
7.	(1)	Given that	
		$\frac{2w-3}{10} = \frac{4+7i}{4-3i}$	
			6
		find w , giving your answer in the form $a + bi$, where a and b are real constants. You must show your working.	X
		(4))
	(ii)) Given that	
		$z = (2 + \lambda i)(5 + i)$	
		where λ is a real constant, and that	
		$\arg z = \frac{\pi}{4}$	
		find the value of λ .	
		\sim (4))
_	K	3	
-			
			C

