CIE Pure Mathematics 1 分类真题 2020-2022 册

A Level Clouds 出品

	目录	
(8)	Chapter 1 Quadratics	1
0	Chapter 2 Functions	21
	Chapter 3 Coordinate Geometry	67
	Chapter 4 Circular Measure	108
	Chapter 5 Trigonometry	147
	Chapter 6 Series	199
	Chapter 7 Differentiation	252
	Chapter 8 Integration	285

Apter 1
Quadratics Y Level evel clouds with

Q1: 9709/11/S20

5		equation of a line is $y = mx + c$, where m and c are constants, and the equation of a curve = 16.	e is
	(a)	Given that the line is a tangent to the curve, express m in terms of c .	[3]
			••••
			••••
			••••
			••••
			••••
			••••
			••••
			••••
			••••
			••••
	(b)	Given instead that $m = -4$, find the set of values of c for which the line intersects the curve two distinct points.	e at [3]
			••••
			••••

Q2: 9709/12/S20

	angent to the curve, find the value of k .
s now given that $k = 2$.	
s now given that $k = 2$. Express the equation of the curve in	in the form $y = 2(x + a)^2 + b$, where a and b are constant errors of the curve.
s now given that $k = 2$.	in the form $y = 2(x + a)^2 + b$, where a and b are constant ertex of the curve.
s now given that $k = 2$. Express the equation of the curve in	In the form $y = 2(x + a)^2 + b$, where a and b are constant ertex of the curve.
s now given that $k = 2$. Express the equation of the curve in	ertex of the curve.
s now given that $k = 2$. Express the equation of the curve in	ertex of the curve.
s now given that $k = 2$. Express the equation of the curve in	ertex of the curve.
s now given that $k = 2$. Express the equation of the curve in	ertex of the curve.
s now given that $k = 2$. Express the equation of the curve in	ertex of the curve.
s now given that $k = 2$. Express the equation of the curve in	ertex of the curve.
s now given that $k = 2$. Express the equation of the curve in	ertex of the curve.
s now given that $k = 2$. Express the equation of the curve in	ertex of the curve.
s now given that $k = 2$. Express the equation of the curve in	ertex of the curve.
s now given that $k = 2$. Express the equation of the curve in	ertex of the curve.
s now given that $k = 2$. Express the equation of the curve in	ertex of the curve.
s now given that $k = 2$. Express the equation of the curve in	ertex of the curve.
s now given that $k = 2$. Express the equation of the curve in	ertex of the curve.
s now given that $k = 2$. Express the equation of the curve in	ertex of the curve.