CIE Further Pure Mathematics 2

分类真题

2020-2022 册

A Level Clouds 出品

目录		
Chapter 1 Hyperbolic Functions	1	
Chapter 2 Matrices	3	
Chapter 3 Differentiation	34	
Chapter 4 Integration: Reduction Formulae	5 7	
Chapter 5 Integration: Arc Length and Surface Areas	65	
Chapter 6 Integration: Limits of Areas	82	
Chapter 7 Complex Numbers	105	
Chapter 8 Differential Equations	131	

Chapter 1 **Hyperbolic Functions** 1

Q1: 9231/21/S22

(a)	Starting from the definitions of cosh and sinn in terms of exponentials, prove that	
	$\cosh 2x = 2\sinh^2 x + 1.$	[3]
		,
		•••••
(b)	Find the set of values of k for which $\cosh 2x = k \sinh x$ has two distinct real roots.	[5]
(6)	That the set of variety of which cosh 2x within x has two distinct real roots.	اء.

Chapter 2 3

Q1: 9231/21/S20

	Find the values of a for which the system of equations				
	3x + y + z = 0,				
	ax + 6y - z = 0,				
	ay - 2z = 0,				
	ay-2z=0,				
	does not have a unique solution.	[3			
GD1	(V1)				
Ine	e matrix A is given by				
	/3 1 1				
	$\mathbf{A} = \begin{pmatrix} 3 & 1 & 1 \\ 0 & 6 & -1 \\ 0 & 0 & -2 \end{pmatrix}.$				
	$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & -2 \end{pmatrix}$				
(b)	Use the characteristic equation of A to find the inverse of A^2 .	[4			
		\C			
		10			

Find a matrix P and a diagonal matrix D such t	that $\mathbf{A}^5 = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$.
	. ~~
	10 10.